What Children Learn through Game-Based Learning Systems?

Masanori Sugimoto
Dept. of Frontier Informatics
Dept. of Information & Communication Engineering
University of Tokyo
sugi@itl.t.u-tokyo.ac.jp

Outline
• Introduction
 – Why games and toys?

• Examples
 – T-RHYTHM
 – Epro/CarettaKids
 – CoGAME

• Discussions
 – Issues to be investigated

• Final Remarks
Why Games / Toys for learning?

“Oh, if kids were only as motivated in playing Nintendo …” Instead of this lament, education needs turn a bug into a feature

in *Communications of the ACM*" by Elliot Soloway (1991)

Can we accept this claim now?

Cognitive/Psychological Backgrounds

- **Constructivism**
 - People construct new knowledge through their experiences
 - Games/toys can enhances their experiences?
- **Motivation**
 - Challenge, Fantasy, Curiosity

 - People learn more in a realistic setting?
- **Flow**
 - Optimal experiences
 - Immersed into plays of games/toys
Technological Backgrounds

• Mixed reality, mobile, pervasive, ubiquitous technologies
 – allow people to interact with themselves and artifacts in the real world
 – plays of games/toys in any time and any place
 – Make virtual and real worlds seamless
 – ...
• High computing performance
 – makes virtual things more realistic
 – less processing time, prompt feedback
 – makes people more immersed, less frustrating
 – ...

Key ideas

Why games/toys for learning?
 □ *Enhancing learning experiences*

• Designing learning experiences by learners themselves

• MR, mobile, ubiquitous, robotics technologies are useful for enhancing interactions between learners and artifacts in physical/virtual worlds.
Outline

• Introduction
 – Why games and toys?

• Examples
 – T-RHYTHM
 – Epro/CarettaKids
 – CoGAME

• Discussions
 – Issues to be investigated

• Final Remarks

Examples

• T-RHYTHM (2005)
 – For learning rhythm patterns of music

 – For learning environmental and urban problems

• CoGAME (2006)
 – For supporting spatial cognition / understanding
Overview of T-RHYTHM Project

• [Goal] Supporting school children’s rhythm learning in solo and ensemble situations

• [Approach] Stimulating learners’ senses of touch in sync with the music

• [Evaluation] Educational practices in an elementary school

Why Rhythm Learning?

• One of the goals of music classes is that children acquire the fundamental skills for musical expressions and enjoy them through rhythm learning

• What symmetry is to the plastic arts, rhythm is to music

 in “The World as Will and Idea” by Arthur Schopenhauer (1883).

• …..
Music Learning in Elementary Schools

- Children are not always good at music (too difficult for them to recognize the rhythm of the music by listening its melody) and are not so motivated for learning.
- Schoolteachers try various teaching methods: e.g. they pat each of their children on the shoulder in sync with the music, in order to let her know her rhythm patterns intuitively.
- Many children (30 ~ 40) in a classroom → almost impossible for a teacher to pat all children’s shoulder
- “Noisy” environment for individual learners → easy to listen ??

Goals of T-RHYTHM Project

- Supporting school children who do not have rich experiences in music learning.
- Rhythm understanding and expression through senses of touch
 - Sense of touch: unusual experiences for children in a music class, which raise the level of their motivation and engagement for learning
- Used by individual children in solo, or simultaneously by multiple children in ensemble.
Senses of Touch

- Comparisons with vision and audition

<table>
<thead>
<tr>
<th></th>
<th>skin</th>
<th>eye</th>
<th>ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>perception time (ms)</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>minimum time interval of two stimuli (ms)</td>
<td>5</td>
<td>25</td>
<td>0.01</td>
</tr>
</tbody>
</table>

- Sensitivity: as low as 0.2 \(\mu \) amplitude, 5 mg pressure threshold

> A system that supports *rhythm learning through senses of touch* is possible!

T-RHYTHM: Demo Video

[Image of a keyboard and a device]
System Overview

Vibration Device
T-RHYTHM in Classrooms

• T-RHYTHM has been used in educational practices (music class for age 10-11 children).

• Individual children feel the rhythm and perform an instrument following the tempo set by themselves, and finally play in ensemble.

• Preliminary user studies indicated that providing learners with tactile stimuli was effective for recognizing and expressing the rhythm patterns of the music.

Overview of Epro/CarettaKids

• Learning about urban planning and environmental issues in face-to-face situations for fourth to sixth graders (age: 10-12).

• A physical interface allows learners who are not good at using computers, to join collaborative learning.

• Learners can test knowledge acquired through textbooks or teachers in a physical space.

• A sense of play is introduced for raising learning motivations
Initial Ideas of Epro

Design Requirements for Epro

• [Hardware issue] The system should automatically and rapidly recognize types and locations of objects that are manipulated by learners.

• [Software issue] Based on the arrangement of the objects, the system should calculate environmental changes and visualize them through simulations.
Prototype Design of Epro

• **Paperboards and pieces**: we designed different sizes of paper boards and pieces, in order to examine suitable design for children.

• **Simulation and visualization**: through collaboration with teachers, we decided to designed simulation model not too complicated: three type of pieces (house, tree, and factory), and five parameters (noise, air/water pollution, garbage, finance)

Issues Found through Evaluations

• **Behavior**: children pulled/pushed, and leaned over the board so that they could easily put pieces on it.

• **Size**: the board should be large enough for four to eight learners to sit around it.

• **Resolution**: 300 to 500 pieces were necessary to give each learner sufficient opportunities for manipulating pieces, and to make the simulation results educationally meaningful.

• **Simulation model**: The simulation model was simple, but children could find relations between pieces and environmental parameters, and discuss constructively.
Design Decisions of Epro

- **Technology:** A method with image processing or a touch sensitive display *is not suitable*. We used a sensor-based method to accept simultaneous multiple inputs by a group of users.

- **Size and Resolution:** The board has about 500 grids, each of which a sensor (RFID reader) is embedded.

Backgrounds of CarettaKids

- In Epro, a visible space is shared among all the learners; their manipulations are *interfered* with each other, and difficult for individual learners to recognize the results of their own manipulations.

- Some children who were the leaders among their classmates seized the leadership and the other children often followed without discussions.

- The system does not provide each learner with an opportunity to examine his/her ideas, which may hinders his/her reflection.

- A computational media that retains features for supporting collaboration, but also allows each learner’s reflection.
Design of CarettaKids

Integration of personal and shared spaces

• **Shared space**: an immersive environment for collaboration that raises the level of awareness among learners. A *multiple input device* and *augmented reality* technologies are used

• **Personal space**: a *mobile space* for an individual user without being disturbed by other users

• The proposed system, *CarettaKids*, (formerly, *Caretta*) allows learners to smoothly transition between both spaces

System Configuration

- **Shared space**
 - sensing board
 - server computer
 - LCD projector

- **Personal space**
 - PDA

- Data communication between two spaces
 - WiFi
 - RFID reader (sensing board) & RFID tag (PDA)
How CarettaKids is Used

• Shared space

• Personal Space

Requirements for CarettaKids

• Learners on their individual personal space can conduct tasks that they can conduct on the shared space.

• From collaboration to individual reflection: Learners can transition from the shared space to their own personal space in an intuitive manner.

• From individual reflection to collaboration: Learners can transition from their own personal space to the shared space in an intuitive manner.
Transition to Personal Space

An intuitive transition method from the shared space to a personal space

• Users are collaboratively working on the shared space. One of them wants to test his idea without being disturbed by the others.
• He/she wants to examine the idea on his/her personal space (PDA).
• Scrolling on a small display of a PDA to find an area of interest on the shared space is an irritating task.
• Intuitive method: bringing a PDA close to an area of interest on the shared space, then the corresponding area immediately appears on the PDA.
• The learner can test his/her idea on the PDA.

Transition to Shared Space

Intuitive transition methods from a personal space to the shared space

• A learner individually has tested an idea on his/her personal space.
• The learner finds a good idea, and wants to discuss about it with the other learners.
• The learner can display his idea on the shared space in an intuitive manner (by bringing the learner’s PDA close to the shared space).
• The idea shown on the shared space is collaboratively discussed with the other learners.
Educational Practice

• CarettaKids has been used in an elementary school classroom (age 11 – 12).

• Integration of personal and shared spaces can help promote children's participation in synchronous / co-located interactions in the classroom and deepen their understanding of subject matter.

Overview of CoGAME

• Intellectual training for children
 – Inspired by Water Works (card game) or Candy Train (board/puzzle game)
 – Spatial cognition and inference
• Collaboration GAME (also CoGAME means a turtlet: 子蠵）
 – Multiple players & a robot (turtle)
• Interaction with physical and virtual objects
 – Virtual paths and obstacles, a physical robot and obstacles
• Intuitively manipulate a robot in any location
 – Manipulation by projection
How CoGAME is played

Technological Details

- Mobile computer augmented with a small-size/ lightweight projector
- Realtime calibration of a moving projected screen using an accelerometer sensor
- Recognition of a robot using a camera attached to a mobile computer and control of the robot to make it follow a projected path
- Automatic image correction between multiple projected images
Initial Evaluations
Inquiry results from demos
- Easy to manipulate robots using a mobile projector
- To successfully guide the robot to its goal, players’ communication and collaboration are inevitable.
- More than two players and multiple robots will make the game more exciting and challenging, and will be more effective for children’s training for their spatial cognition / understanding.
- ...

Outline
- Introduction
 - Why games and toys?
- Examples
 - T-RHYTHM
 - Epro/CarettaKids
 - CoGAME
- Discussions
 - Issues to be investigated
- Final Remarks
Discussions

• Enhancing learning experiences: Using game based systems for enhance learners’ experiences seems a good strategy
 → Learners respond positively to enjoyable experiences, and therefore have motivations for their further activities.

• What experiences are given to learners through game based systems? --- Just fun? or useful knowledge/skills?

Issues to be investigated

• Game based learning systems do not always make learning efficient
 – People enjoy processes rather results of game plays.
 – Learners are not always given explicit learning goal: “learning by exploration”, “learning by discovery”, “learning by chance”.

• If features such as, “exploration”, “discovery”, or “contingency”, are eliminated and learning goals are fixed, a learner may not feel interesting, will not be fully motivated or engaged.

• Game based learning systems should be designed so that although learners feel it’s just a fun at the beginning phase, they become engaged in their activities and become motivated for their learning itself.
Final Remarks (1)

What do children learn through game-based learning systems?

No compulsory learning can remain in the soul. . . In teaching children, train them by a kind of game, and you will be able to see more clearly the natural bent of each

in *The Republic*, by *Plato*

Just a sugar coating for fun, to conceal a bitter experience inside?

Whether children are affected badly by (TV, Video) games?

Final Remarks (2)

What should be done next?

- Assessment based on scientific evidences without any preconception

- Design methodology: what technologies used for who, to learn what, in what situations?
Thanks to the Collaborators

Hiromichi Hashizume Kazuhiro Hosoi
Shigenori Inagaki Sosuke Miura
Fusako Kusunoki Dao Vinh Ninh
Etsuji Yamaguchi Akihiro Mori

Thank you for your attention!